

 Testlab

	Static analysis
	Disassemblers
	Debuggers
	Decompilers
	Program editing tools
	Analysis automation programming
	Software forensic tools
	Malware analysis tools
	Binary analysis VM

Binary formats

	Introduction	What?
	Why?
	How?

	Anatomy of binaries	C compilation process
	Symbols and stripping
	Disassembling a binary
	Loading and executing	Running a binary
	Interpreter

	Executable and Linkable Format (ELF)	Executable header	e_ident
	e_type, e_machine, and e_version
	e_entry
	e_phoff and e_shoff
	e_flags
	e_ehsize
	e_*entsize and e_*num
	e_shstrndx

	Section headers	sh_name
	sh_type
	sh_flags
	sh_addr, sh_offset, and sh_size
	sh_link
	sh_info
	sh_addralign
	sh_entsize

	Sections	.init and .fini
	.text
	.bss, .data, and .rodata
	.plt, .got, and .got.plt
	.rel.* and .rela.*
	.dynamic
	.init_array and .fini_array
	shstrtab, .symtab, .strtab, .dynsym, and .dynstr

	Program headers	p_type
	p_flags
	p_offset, p_vaddr, p_paddr, p_filesz, and p_memsz
	p_align

	Portable Executable (PE) format	MS-DOS header
	PE Signature, File Header, and Optional Header	PE Signature
	PE File Header
	PE Optional Header

	Section Header table
	Sections	.edata and .idata
	Padding

Cracking

	Introduction	What?
	Why?
	How?

	Assessment and static analysis	Origins
	Existing information
	Viewing the file and extracting its text strings
	File information
	Static analysis

	Reverse engineering in Linux	Compilation
	Identification
	objdump
	ltrace
	strace
	gdb
	radare2
	Getting a password	Static

	Dynamic

	Reverse engineering in Windows
	WebAssembly (WASM)	Resources

Malware analysis

	Introduction	What?
	Why?
	How?

	History of malware
	Typical behaviours
	Purpose of a malware attack
	Malware signatures
	Static and dynamic analysis	Static
	Dynamic
	Resources

	Packers	Identifying packers

Useful snippets

	Using Windows APIs
	Code snippets for using WASM
	Binary loader using libbfd

Root-me cracking challenges

	Introduction	What?
	Why?
	How?

	ELF x86 0 protection	Resources

	ELF x86 basic	Resources

	PE x86 0 protection	Resources

	ELF C++ 0 protection	Resources

	Godot 0 protection	Resources

	PE x86 0 protection	Resources

	ELF MIPS basic crackme	Resources

	ELF x64 golang basic	Resources

	ELF x86 fake instructions	Resources

	ELF x86 ptrace	Resources

	Godot bytecode	Resources

	WASM introduction	Resources

	ELF ARM basic crackme	Resources

	Godot mono	Resources

	PYC bytecode	Resources

	ELF x86 no software breakpoints
	ELF ARM crackme 1337	Resources

	ELF x86 crackpass
	ELF x86 exploitme
	ELF x86 random crackme
	GB basic Game Boy crackme	Resources

	APK anti-debug

TryHackMe rooms

	Introduction	What?
	Why?
	How?

	Analysing malicious pdfs	Questions

	Analysing malicious Microsoft Office macros	Questions

	I hope you packed your bags	Packing/unpacking
	Identifying packers
	Questions

	THM Dunkle Materie	Questions

More practice

	Malware traffic analysis exercises
	theZoo - A Live Malware Repository
	crackmes.one

 Cracking nuts & malware analysis

 	Cracking & Malware analysis
	Red Team
	Blue Team
	Improbability Blog
	About
	Register

 	
	THM Room: REMnux

Analysing malicious pdfs

PDFs can contain code that can be executed without the user’s knowledge:

	Javascript

	Python

	Executables

	Powershell Shellcode

Questions

How many types of categories of Suspicious elements are there in notsuspicious.pdf

remnux@thm-remnux:~/Tasks/3$ peepdf notsuspicious.pdf
Warning: PyV8 is not installed!!File: notsuspicious.pdf
MD5: 2992490eb3c13d8006e8e17315a9190e
SHA1: 75884015d6d984a4fcde046159f4c8f9857500ee
SHA256: 83fefd2512591b8d06cda47d56650f9cbb75f2e8dbe0ab4186bf4c0483ef468a
Size: 28891 bytes
Version: 1.7
Binary: True
Linearized: False
Encrypted: False
Updates: 0
Objects: 18
Streams: 3
URIs: 0
Comments: 0
Errors: 0Version 0:
 Catalog: 1
 Info: 7
 Objects (18): [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
 Streams (3): [4, 15, 18]
 Encoded (2): [15, 18]
 Objects with JS code (1): [6]
 Suspicious elements:
 /OpenAction (1): [1]
 /JS (1): [6]
 /JavaScript (1): [6]

Use peepdf to extract the javascript from notsuspicious.pdf. What is the flag?

remnux@thm-remnux:~/Tasks/3$ echo ‘extract js > javascript-from-demo_notsuspicious.pdf’ > extracted_javascript.txt
remnux@thm-remnux:~/Tasks/3$ peepdf -s extracted_javascript.txt demo_notsuspicious.pdf
remnux@thm-remnux:~/Tasks/3$ cat javascript-from-demo_notsuspicious.pdf
// peepdf comment: Javascript code located in object 6 (version 0)app.alert("THM{Luckily_This_Isn't_Harmful}");

How many types of categories of Suspicious elements are there in advert.pdf

remnux@thm-remnux:~/Tasks/3$ peepdf advert.pdf
Warning: PyV8 is not installed!!File: advert.pdf
MD5: 1b79db939b1a77a2f14030f9fd165645
SHA1: e760b618943fe8399ac1af032621b6e7b327a772
SHA256: 09bb03e57d14961e522446e1e81184ca0b4e4278f080979d80ef20dacbbe50b7
Size: 74870 bytes
Version: 1.7
Binary: True
Linearized: False
Encrypted: False
Updates: 2
Objects: 29
Streams: 6
URIs: 0
Comments: 0
Errors: 1Version 0:
 Catalog: 1
 Info: 9
 Objects (22): [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
 Compressed objects (7): [10, 11, 12, 13, 14, 15, 16]
 Streams (5): [4, 17, 19, 20, 22]
 Xref streams (1): [22]
 Object streams (1): [17]
 Encoded (4): [4, 17, 19, 22]
 Suspicious elements:
 /Names (1): [13]Version 1:
 Catalog: 1
 Info: 9
 Objects (0): []
 Streams (0): []Version 2:
 Catalog: 1
 Info: 9
 Objects (7): [1, 3, 24, 25, 26, 27, 28]
 Streams (1): [26]
 Encoded (1): [26]
 Objects with JS code (1): [27]
 Suspicious elements:
 /OpenAction (1): [1]
 /Names (2): [24, 1]
 /AA (1): [3]
 /JS (1): [27]
 /Launch (1): [28]
 /JavaScript (1): [27]

Now use peepdf to extract the javascript from advert.pdf. What is the value of cName?

remnux@thm-remnux:~/Tasks/3$ echo ‘extract js > javascript-from-advert.pdf’ > extracted_javascript.txt
remnux@thm-remnux:~/Tasks/3$ peepdf -s extracted_javascript.txt advert.pdf
remnux@thm-remnux:~/Tasks/3$ cat javascript-from-advert.pdf
// peepdf comment: Javascript code located in object 27 (version 2)this.exportDataObject({
 cName: "notsuspicious",
 nLaunch: 0```

Still, the advert.pdf actually does have an embedded executable. View the extracted Javascript.
When the PDF is opened, the user will be asked to save an attachment.

 Previous
 Next

 Unseen University, 2023, with a forest garden fostered by /ut7.

